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not be zero. In this case, (1) must be corrected, since
the plunger measures the integral [(eF2—uH?2)dV
rather than the desired Eq2AV. This can be taken into
account by the correction factor « which is approximate-
ly given by a=(3) (ka)?, assuming the fields vary in a
manner similar to the principal mode in a cylindrical
cavity. Here o is the plunger radius and ky=2.4/p,.
Results for a particular case are shown in Fig. 7 (previ-
ous page), indicating that the correction is fair for the
particular configuration. The accuracy of this correction
for other configurations is a matter of some conjecture.
In general, for the best results, the perturbing volume
should be as small as possible.

The effect of coupling-loop size and contact pressure
on R/Q measurements was also investigated, and as
expected, did not affect the value of R/Q, but shifted
the resonant frequency slightly.
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CONCLUSIONS

The values of R/Q of klystron cavities obtained by
using radial-field or coaxial-field distributions are very
useful, except for a class of configurations approaching
“square” resonators. For this class of cavities, the mean
value of the two field approximations gives values of
R/Q which are in general too low. The error, as deter-
mined by experiment and net point calculations, does
not exceed 15 per cent, for values of kp; £0.6 (provided
kd <0.5) and for values of kp; <0.8 (provided %d <0.3).
Accurate values of R/Q for these configurations are also
given. For cavities which do not fall within above
specifications, the fields should be determined by net
point methods, or by experiment. Effects of perturbing
plunger sizes on R/(Q measurements may also be im-
portant if plunger diameter is comparable to post di-
ameter; a correction factor should then be applied.

Planar Transmission Lines—II*
DAVID PARK]L

Summary-—An expression is found for the characteristic im-
pedance of a transmission line consisting of two parallel strips of foil
placed between, and perpendicular to, two wide plates.

INTRODUCTION
C\ONTINUING the investigation of an earlier

, baper,! of transmission lines composed of flat
strips of metal or foil, we examine here the char-
acteristics of a line in which the strips no longer lie
in the same plane. We shall be concerned with a con-
figuration, shown in Fig. 1(a), in which the two center
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Fig, 1-—(a) Cross section of the transmission line. The vertical strips
are driven and the horizontal plates, assumed very wide, are
electrically neutral. (b) Arrangement electrically equivalent to
(a). Some significant points are numbered.

* Supported by Sprague Electric Co., North Adams, Mass.

T Williams College, Williamstown, Mass. Fullbright Lecture in
Physics at the Univ. of Ceylon, 1955-6).

1 D. Park, “Planar transmission lines,” Traxs. IRE, vol. MTT-3,
pp. 8-12; April, 1955.

strips are perpendicular to the top and bottom sheets,
midway between them, and separated from each other
by distance 2D. The center strips are each of height 2C,
and the separation between the top and bottom sheets
is 2H. The center strips are driven, and the top and bot-
tom sheets are considered to be electrically neutral and
effectively infinite in width.? We shall use the notations
and, as far as possible, the results of the earlier paper to
find, by the method of conformal mapping, the char-
acteristic impedance Z, of the line in terms of H, C, D,
and the dielectric constant k of the dielectric material
between the plates. (To calculate the attenuation by
the methods of the earlier paper is straightforward
though rather onerous, and we have not carried it out.)

GENERAI FORMALISM

To begin with, let us substitute for the arrangement of
Fig. 1(a) that of Fig. 1(b), in which the left-hand side
of the line is substituted by its image in the vertical cen-
ter plane. As mentioned,® the line 1234 can be mapped
by the transformation

z=AsinhZ/B (1)

into the y axis of the z plane, if
(1/2)xB = H. (2)
We must now see what this mapping does to the internal

2 Ibid., section 5, for an examination of this assumption in the

case dissussed there.
3 Ibid.
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strip. Setting Z=D+jY in (1), we find that

z / D Y D Y
= v +]y: sinh — cos — -+ j cosh — sin —
A A B B B B

whence, equating real and imaginary parts and elimi-
nating Y, we find that the image curve of the strip is
the ellipse

2

2

x
+
A?%sinh?*D/B

Y
=1 3)
A?cosh? D/B

as shown in Fig. 2(a) where @ and 8, the major and minor
axes of the ellipse, are 4 cosh D/B and A4 sinh D/B,
respectively. This arrangement is of course equivalent
to that of Fig. 2(b), and at this point one can see one’s
way to a solution, for if the ellipse is mapped onto a
circle, this circle can, by a suitable linear fractional
transformation, be mapped onto a straight line. The
two strips will then be represented by two segments
of this line, and the problem can be completed.*
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Fig. 2—(a) The line 1234 of Fig. 1(b) has been mapped into the
y-axis, and the strip 56 into a segment of an ellipse. (b) Arrange-
ment electrically equivalent to (a).

The mapping which carries the ellipse in the z plane
into a circle of radius p in the 2’ plane is®

2 3
= '\/kp sn |:?jK sinh—1 m] (4)

where sn x is the Jacobian elliptic function of modulus
k, K is the complete elliptic integral of the first kind
(and of modulus k), and % is defined in terms of the
modular function ¢ by the relation®”

a(h) = s = (S2) 0

If we put in the values of @ and 8 and then use (1) to
express z in terms of Z, we get

2iKZ (g = o .
B) g=ce )- (6)

= \/kpsn<

T

4 Thid.

5 This i is derived by a rotation of axes from a mappmg given by
H. Kober, “Dictionary of Conformal Representations,” Dover Pub-
lications, Inc New York, N. Y., p. 177; 1952.

8 Park, op. cit.

7 See E. B. Wilson, “Advanced Calculus,” Ginn and Co., Boston,
Mass., chaps. 17 and 19; 1911.
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This mapping is shown in Fig. 3.
To complete the transformation, let us approach the
configuration of Fig. 3 from the other direction, starting

Y Z-PLANE Y ZPLANE
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Fig. 3—(a) The ellipse of Fig. 2(a) has been mapped into a circle
of radius p. (b) Arrangement electrically equivalent to (a).

with that of Fig. 4, for which a solution has already been
found.! The general transformation, mapping circles
in one plane into straight lines in another, is the linear-
fractional one, which has the form 2" = (pz’’ +q)/(rz"
+5). To determine the constants we require that the
image points corresponding to the edges of the strips
in the 2" plane lie respectively horizontally and vertical-
ly opposite each other, as in Fig. 3(b). The calculation
is very straightforward, and yields
—V/(b/a)s" + ja

=T ji''/d — 2¢/w (c=b—a 0

where ¢ represents the width of the flat strips and d and
w are limited by the relation

ab — (7‘;) (8)

y 7z=PLANE

Fig. 4 —Two-strip transmission line which is electrically equivalent
to Fig. 3(b) and for which a solution has already been found.

The real axis of Fig. 4 is mapped into the circle of Fig.
5, whose center is easily found to be at a height w above
the origin. Further, it is seen from Fig. 5 that if p is the
radius of the circle, then

pr= &+ . )

Finally, we can express z’"’
tion

in terms of g’ by the rela-

g =7 — jw (10)
or, using (6) and (7),
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Vb —ja K7
:;%g;;;;i=][w4-Vhﬁn<iB>}‘ (11)

Now we must find out how d and w, and after that ¢ and
b, depend on the numbers C, D and H which define
the original configuration. For this it is convenient to
return to (10), and note that the point 5 is at (d, 0)
in the g’’’ plane and at (D, —jC) in the Z plane.Equating
these, and using (6), we have

. 2K )
ja = \/kpsn[— (e +JD)} + w
B

/' ZLPLANE

Fig. 5~—The real axis of Fig. 4 has been mapped into a circle cor-
responding, except for the position of the origin, to that of
Fig. 3(b).

from which, by comparing real and imaginary parts,
we get

D= RE Dt (1)
14 ksn?yu 1+ ksn’u
where
2KC KC KC
p=l =t (13)

B H 2D

by (2), (5) and (6), and as a check one can verify that
d and w satisfy (9).

These results enable us to write down the line’s char-
acteristic impedance Z¢® for it is shown that the (final)
mapping

17

g =asn W (14)

maps the isolated segments of Fig. 4 onto the continuous
lines of Fig. 6, so that the continuous ladder of lines
of force in the W plane, extending horizontally {rom one
vertical to the other, is mapped through these successive
transformations into the complex pattern which they
exhibit in the Z plane. It is shown?® that if we write I for
the modulus of the elliptic function in (14), define I’ by

V=11, (15)

and write L and L’ for the complete elliptic integrals of
the first kind associated with the moduli / and 7, then
! is determined by the relation

8 Park, op. cit.
9 Tbid.
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b=a/l (16)
and that in terms of it
u\ L
Zy = —)— 17
’ 4/< € > L (n

where u and € are the permeability and permittivity of
the dielectric material.

In order to find [ we turn back to (8) which, remem-
bering that ¢ is b—a, gives

or, choosing the root that puts / between 0 and 1,

w? d*
l=1—2~—|:\/(1—|——>—- 1}, (18)
d? w?
for this has the limiting forms
( d2 4>
KPS S
4° 2w?
~ ? N \ \
1—~;+2—d—_2— (d> w). (19)
W-PLANE
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Fig. 6—The darkened segments of the real axis of Fig. 1 have been
mapped into two vertical lines. The segments darkened here cor-
respond to a complete circuit, top and bottom, of those of Fig. 4.
Above and below these segments the mapping repeats itself.

Putting (12) into (18), we find that / can be expressed
in two forms:

_ (1 — ksnu)(1 —snpu)

VI (20a)
cn wdn u
or
(1 —snw(l — ksnu)
- o (20b)
(I +snp)(1+ ksnpy)
In order to find Z,, we need only write 10
e 21)
L =y (

10 Thid.
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where f is the functional plotted in Fig. 7. Then, if the
permeability of the dielectric medium is taken to be
that of free space, so that +/(u/€) =120m/+/k, where
k is the medium’s dielectric constant, we have

6
M R
2 ™=
\

/

© olo203 040306 0T 08 & 10
k®

Fig. 7—Plot of f(k?) =(In)1/q against k% Note that
f(B?) =x2/f(k'?), where k24-E"2=1.

P 120f(l’2) _ 12072
YN A )

It is now a straightforward matter to carry out the
calculation of Z, for any line. First it is necessary to find
k, defined by (6). We can use (2) to write

1 D
In— = 27 —

q

and the quantity on the left, designated as f(k2), is
plotted against k% in Fig. 7. Next, one substitutes £ and
u, which is defined in terms of k& by (13), into (20) to
find 1. With [, one can use Fig. 7 again to find Z, via (22).
But this process, though a simple enough in principle,
is cumbersome in practice and suffers from the further
disadvantage that it deprives one of any analytic insight
into the nature of the relationships involved. It is there-
fore advisable to look into ways in which the elliptic
functions used here can be approximated by functions
of more familiar types and the result written as a single
formula for Z, in terms of the parameters describing
the line. We have found a number of ways in which
this can be done, corresponding to various inequalities
which the parameters may satisiy. In the following
section we shall examine approximations which are
valid when the center strips reach nearly to the top and
and bottom plates, so that the field between strip and
plate is much stronger than that between strips. By
way of example, we shall carry this out in detail, first
for a line in which the separation between the strips is
large compared with that between the plates, since this
can be done by elementary methods; and then with
this restriction removed, for which it is necessary to
make use of some more profound properties of elliptic
functions.

(22)

APPROXIMATIONS VALID WHEN H—CKH
The Case D>H

To illustrate how the work of computation can be
done approximately, let us consider the case in which

Ociober

the separation between the strips is large compared
with the distance between the top and bottom plates:
D>>H. This means that ¢ in (6) is small. To find &
we can use the relation!!

21
16g = &+ (1/2)k* + — &+ - - -
64
to obtain
1
2 = (ze—D/B)4 _ 7 (ge—D/B)s + - -, (23)

Further, since sn 2Kx /7 differs from sin x only by terms
in k2, we have from (20Db), to the first power in k&,

.r C
1 —sin— —
2 O T C
I =~ 1 — 8¢ "P/H gin — — ). (24)
.7 C 2 H
14 sin— —
2 H

Suppose now that Cis nearly H, and write

C
— =1 XK 1). 25
7 € (e ) (25)
Then
! e (1 g D/H) 2
=~ — 8¢=mPIH),
16 (26)
Using the approximationt
4
f(?) = 21n 7 Ik, 27
we find that in this case
3072/+/K
Ly =~ SH (H-C<KHKD). (28
In——— 4 4¢P
m(H — C)

From this we can at once obtain the impedance of a line
with only one center strip by letting D become infinite
and dividing Z; by 2 because the potential is now ap-
plied between the strip and the outer plates:

1572

8H
wH ~C)
The General Case

The situation when D is not large compared with H
can be treated somewhat less easily; for variety we
shall start from (19). Writing as before (by (13))
p=K(1—¢), we note that since cn K=0, we have
d/w=0. Use of the addition theorems for the Jacobian
elliptic functions gives

d k¥  sn Ke
—_—= (30)
w 14+ % dn Ke

Zy = (H — C K H, single strip). (29)

vVKln

1 Ibid.
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so that!?
1 — % K%?
T4k 4

(&K 1). (31)
This can be reduced to a series in ¢ which converges
well when ¢ is not too close to unity. It follows from
known formulas in elliptic functions and their trans-
formations®?® that

q 1 ¢
14+¢ 3 1+¢

m
an=ln~é—+4(

+ _];. q5 _l._. - .> (32)
514¢
and
1n5ff=—8\/q< ST S I +> (33)
14k 1—¢ 3 1—¢2 5 1-¢

so that if we write ¢=p?,

T _— PZ + 3 _|_ 4
=2In——38 <P ? ?
2 1— p*
2 Note that higher terms in this expansion are easy to obtain,

since (30) is exact.
1B C, G. J. Jacobi, “Werke,” Berlin, vol. 1, pp. 148, 159; 1881.
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Thus, expanding a few terms,
e 4
Inil = ZInZ— 8<p-—p2+?p3+p“—l— .- ~>, (35)
whence

l_7r252<1 +3 2_{_5 3—I~11 . 8 36
L (1- 8p+---) (36)

of which the first term again gives (26). The use of (27)

and (35) now gives us
2 r
7o = 30m?/ VK
IH—SH +4< - 2+i S+ 4+"'>
w(H = C) b0 3 Ty

(I - C<H) (37

with
? — \/q — e~2D/B — e—7rDlH

As long as H—C remains less than, say, H /4, this is an
excellent approximation for any configuration that one
would be likely to use in practice.

I should like to express my thanks to Dr. A. Morrison
for his helpful suggestions in the preparation of this
paper.

A High-Speed Broadband Microwave Waveguide Switch®

W. L. TEETERY

Summary—A switch which switches microwave energy to any of
several separate waveguide loads is described. The switch has the
bandwidth and power-carrying capability which is essentiaily that of
the input and output waveguides. Data is given for a switch which
operates over the frequency range of 8,600 to 10,000 mc with a vswr
of less than 1.15 during transmission and less than 1.5 during switch-
ing. The switching speed is limited only by the practical limit for
rotating the metal shorting vane. A typical example is given of a
5-output switch with a switching rate of 1,800 per second (vane rota-
tion of 3,600 rpm) and a dead time during switching of 14 per cent of
total time. Dead time is a function of switch diameter and vane rota-
tion rate and could be reduced by increasing the vane diameter or
rotation rate.

INTRODUCTION

{HIS PAPER describes development of a high-
speed waveguide switch capable of switching high
power from one input to any number of outputs.

* Presented at the Microwave Techniques and Applications Con-
ference, National Bureau of Standards Dedication Scientific Meeting,

Septeraber, 1954.
+ U. S. Navy Electronics Lab., San Diego, Calif.

Three types of switches were studied.

The first switch (Fig. 1, next page), places a number
of waveguide tees in series. A movable vane, containing
a rectangular hole is then moved across the top of each
tee to select which load will receive the rf energy. All
other loads are shorted. This switch has a 1 per cent
bandwidth, excessively high vswr during switching (i.e.,
20 to 1), and two rather critical manufacturing toler-
ances.

The second switch (Fig. 2, next page), has all output
waveguides in shunt to provide a turnstile junction.
Rf energy enters through the circular waveguide at
the base. A cylindrical rotor with a hole in it rotates in
such a way that the hole allows energy to pass to a par-
ticular load. This switch has a 3 per cent frequency
bandwidth, excessively high vswr during switching and
two critical manufacturing tolerances.!

1 There is some discussion of the turnstile switch in MIT Rad.
Lab. series, vol. 9, p. 538.



