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not be zero. In this case, (1) must be corrected, since

the plunger measures the integral ~(eE2–@2)d V

rather than the desired E02A V. This can be taken into

account by the correction factor a which is approximate-

ly given by a = (~) (km) 2, assuming the fields vary in a

tnanner similar to the principal mode in a cylindrical

cavity. Here a is the plunger radius and kl = 2.4/p,.

Results for a particular case are shown in Fig. 7 (previ-

ous page), indicating that the correction is fair for the

particular configuration. The accuracy of this correction

for other configurations is a matter of some conjecture.

In general, for the best results, the perturbing volume

should be as small as possible.

The effect of coupling-loop size and contact pressure

on R/Q measurements was also investigated, and as

expected, did not affect the value of R/Q, but shifted

the resonant frequency slightly.

CONCLUSIONS

The values of R/Q of klystron cavities obtained by

using radial-field or coaxial-field distributions are very

useful, except for a class of configurations approaching

“square” resonators. For this class of cavities, the mean

value of the two field approximations gives values of

R/Q which are in general too low. The error, as deter-

mined by experiment and net point calculations, does

not exceed 15 per cent, for values of k~.1 ~ 0.6 (pr~wided

kd <0.5) and for values of kpl ~0.8 (provided kd <0.3).

Accurate values of R/Q for these configurations are also

given. For cavities which do not fall within above

specifications, the fields should be determined by net

point methods, or by experiment. Effects of pert~u-bing

plunger sizes on R/Q measurements may also be im-

portant if plunger diameter is comparable to post di-

ameter; a correction factor should then be applied.

Planar Transmission Lines-IP
DAVID

Su.nmlary-An expression is found for the characteristic im-
pedance of a transmission line consisting of two parallel strips of foil

placed between, and perpendicular to, two wide plates.

INTRODUCTION

c

\ ONT1 NUING the investigation of an earlier

, paper, 1 of transmission lines composed of flat

strips of metal cm foil, we examine here the char-

acteristics of a line in which the strips no longer lie

in the same plane. We shall be concerned with a con-

figuration, shown in Fig. 1 (a), in which the two center
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Fig. l-–(a) Cross section of Jhe transmission line. The vertic?l strips
are drwen and the horizontal plates, assumed very wide, are
electrically neutral. (b) Arrangement electrically equivalent to
(a). Some significant points are numbered.

* Supported by Sprague Electric Co., North Adams, Mass.

~ Williams College, Williamstown, Mass. Fullbnght Lecture in
Physics at the Univ. of Ceylon, 1955-6).

1 D. Park, “Planar transmission lines, ” TRANS. IRE, vol. MTT-3,
pp. 8–12; April, 1955.
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strips are perpendicular to the top anc[ bottom sheets,

midway between them, and separated from each other

by distance 2D. The center strips are ealchof height 2 C,

and the separation between the top and bottom sheets

is 2H. The center strips are driven, and the top and bot-

tom sheets are considered to be electrically neutral and

effectively infinite in width. z We shall use the notations

and, as far as possible, the results of the earlier paper to

find, by the method of conformal mapping, the char-

acteristic impedance 20 of the line in terms of H, C, D,
and the dielectric constant K of the dielectric material

between the plates. (To calculate the attenuation by

the methods of the earlier paper is straightforward

though rather onerous, and we have not carried i [: out.)

GENERAL FORMALISM

To begin with, let us substitute for the arrangement of

Fig. 1(a) that of Fig. 1 (b), in which the left-hand side

of the line is substituted by its image in the vertical cen-

ter plane. As mentioned, a the line 1234 can be mapped

by the transformation

z = A sinh Z/B (1)

into the y axis of the z plane, if

(1/2)7rB = H. (2)

We must now see what this mapping does to the internal

2 Ibid., section 5, for an examination of this assumption in the
case dissussed there.

8 Ibid.
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strip. Setting Z =D +j Y in (l), we find that This mapping is shown in Fig. 3.

~ X+jy D 1“ DY
To complete the transformation, let us approach the

= sinh — cos — + j cosh — sin —
1= .-l

configuration of Fig. 3 from the other direction, starting
BB BB

whence, equating real and imaginary parts and elimi- $ ~’-PLANE
I

ZLPLANE

nating 1’, we find that the image curve of the strip is i

the ellipse

x’ ~2

—+ =1 (3)
~’ sinh’ D/B .4‘ cosh’ D/B

as shown in Fig. 2(a) where a and (?, the major and minor

axes of the ellipse, are A cosh D/B and A sinh D/B,
respectively. This arrangement is of course equivalent

to that of Fig. 2(b), and at this point one can see one’s

way to a solution, for if the ellipse is mapped onto a

circle, this circle can, by a suitable linear fractional

transformation, be mapped onto a straight line. The

two strips will then be represented by two segments

of this line, and the problem can be completed.4

1? z-PLANE y z-PLANE
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Fig. 3—(a) The ellipse of Fig. 2(a) has been mapped into a circle
of radius p. (b) .h-rangement electrically equivalent to (a).

with that of Fig. 4, for which a solution has already been

found. 1 The general transformation, mapping circles

in one plane into straight lines in another, is the linear-

fractional one, which has the form z’” = (pz” +q)/(yz”

+s). To determine the constants we require that the

image points corresponding to the edges of the strips

in the z“ plane lie respectively horizontally and vertical-

ly opposite each other, as in Fig. 3 (b). The calculation

is very straightforward, and yields

,,, _ – <(b/a)z” + ja
z— (c= b–a) (7)

jz”/d – 2c/w

~1 I
where c represents the width of the flat strips and d and

(0) Lb)
w are limited by the relation

Fig. 2—(a) The line 1234 of Fig. 1(b) has been mapped into the
y-axis, and the strip 56 into a segment of an ellipse. (b) Arrmrge-

()

cd 2
ment electrically equi~-alent to (a). ah=—-.

2W
(8)

The mapping which carries the ellipse in the z plane

into a circle of radius p in the z’ plane is5
II

z~PLAN E

i

[

2 ~
iz’ = ~kp sn — jK sinh–l

<(cl’ – /3’) 1
(4)

T

where sn * is the Jacobian elliptic function of modulus

k, K is the complete elliptic integral of the first kind

(and of modulu~ k), and-k is de&ed in

modular function g by the relationc, T

()LI-B2
q(k) = e–TK’/~ = — .

a+p

-1-6’ 5’ 5 6 as
-b-aabx

terms of the

Fig. 4—Two-striP transmission line which is electrically equivalent
(5) to Fig. 3(b) and for which a solution has already been found.1

If we put in the values of a and ~ and then use (1) to The real axis of Fig. 4 is mapped into the circle of Fig.

express z in terms of Z, we get 5, whose center is easily found to be at a height w above

()

2jKZ
the origin. Further, it is seen from Fig. 5 that if p is the

~~’ = ~kp sn ~ (q ~ e-i~/B). (6) radius of the circle, then

# = dz + ~’. (9)

d Ibid. Finally, we can express z’” in terms of Z’ by the rela-
6 This is derived by a rotation of axes from a mapping given by

H. Kober, “Dictionary of Conformal Representations, ” Dover Pub-
tion

lications, Inc., New York, N. Y., p. 177; 1952.
GPark. ob. cd. z flf = z! _ jw

(lo)

7 See E. B. Wilson, “Advanced Calculus, ” Ginn and Co., Boston,
Mass., chaps. 17 and 19; 1911. or, using (6) and (7),



1955 Park: Planar Transmission Lines—l/

-~(6/a)s” – ja

[

2jKZ
—

( )1
=j zw+~kpsn — ~ (11)

--jz”/d + 2c/w TB

IVOW we must find out how d and w, and after that a and

b, depend on the numbers C, D and H which define

the original configuration. For this it is convenient to

return to (10), and note that the point 5 is at (d, O)

in the z’” plane and at (D, —jC) in the Z plane. Equating

these, and using (6), we have

jd = ~kp sn
[ 1
~(c+m +W

f ‘“ z’~PLANE

@

6’ d6

*“ t
*W2W

(’
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Fig. 5-–The real axis of Fig. 4 has been mapped into a circle cor-

responding, except for the position of the origin, to that of
Fig, 3(b).

from which, by comparing real and imaginary parts,

we get

cnpdnp
d=p ——

l+ksnzp’
W = (k + l)p —%—

l+ksn’p
(12)

where

2KC KC KIC
~__.—.=— (13)

TB H 2D

by (2), (.s) and (6), and as a check one can verify that

d ancl w satisfy (9).

These results enable us to write down the line’s char-

acteristic impedance Z08 for it is shown that the (final)

mapping

z“ = a sn 11- (14)

maps the isolated segments of Fig. 4 onto the continuous

lines of Fig. 6, so that the continuous ladder of lines

of force in the W plane, extending horizontally from one

vertical to the other, is mapped through these successive

transformations into the complex pattern which they

exhibit in the Z plane. It is showng that if we write 1 for

the modulus of the elliptic function in (14), clefine 1’ by

1’ = <(1 – J’). (15)

and write L and L’ for the complete elliptic integrals of

the first kind associated with the moduli 1 and 1’, then

1 is determined by the relation

b = all

and that in terms of it

9

(16)

(17)

where p and c are the permeability and permittivity of

the dielectric material.

In order to find 1 we turn back to (8) which, remem-

bering that c is b– a, gives

1 ()d? 1
—. —— 1,

1=4W’ 1

or, choosing the root that puts 1 between O and 1,

‘=1-2 %[4’+$)-”11 ’18’

for this has the limiting forms

“11–2; +2:; (d:>> w). (19)

:1‘1
W-PLANE

6

5

Fig. 6—The darkened segments of the real axis of Fig. 4 hare been
mapped into two ~~ertical lines. The segments darkened here cor-
respond to a complete circuit, top and bottom, of those of Fig. 4.
Above and below these segments the mapping repeats itself.

Putting (12) into (18), we find that 1 can be expressed

in two forms:

(1 – ksnp)(l – snp)
41 = ––<;;zn;––-– (20a)

or

~= (1 –snp)(l–ksnp)

(l+snp)~l+ksnpj”
(20b)

In order to find ZO, we need only write 10

(21)

8Park, op. cit.

9 Ibid. 10 Ibid.
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where f is the functional plotted in Fig. 7. Then, if the

permeability of the dielectric medium is taken to be

that of free space, so that ~(p/e) = 1207r/~~, where

K is the medium’s dielectric constant, we have

Fig. 7—Plot of ~(k’) = (111)1/g against kz. Note that
f(k’) = #/j(k’z), where k’+k” = 1.

120f(l”) 1207r2
z, =

UK = <Kf(z’) “
(22)

It is now a straightforward matter to carry out the

calculation of ZO for any line. First it is necessary to find

k, defined by (6). We can use (2) to write

and the quantity on the left, designated as f (k2), is

plotted against k2 in Fig. 7. Next, one substitutes k and

V, which is defined in terms of k by (13), into (20) to

find 1. With 1, one can use Fig. 7 again to find ZO via (22).

But this process, though a simple enough in principle,

is cumbersome in practice and suffers from the further

disadvantage that it deprives one of any analytic insight

into the nature of the relationships involved. It is there-

fore advisable to look into ways in which the elliptic

functions used here can be approximated by functions

of more familiar types and the result written as a single

formula for ZO in terms of the parameters describing

the line. We have found a number of ways in which

this can be done, corresponding to various inequalities

which the parameters may satisfy. In the following

section we shall examine approximations which are

valid when the center strips reach nearly to the top and

and bottom plates, so that the field between strip and

plate is much stronger than that between strips. By

way of example, we shall carry this out in detail, first

for a line in which the separation between the strips is

large compared with that between the plates, since this

can be done by elementary methods; and then with

this restriction removed, for which it is necessary to

make use of some more profound properties of elliptic

functions.

APPROXIMATIONS VALID WHEN R– C<<H

The Case D>>H

the separation between the strips is large compared

with the distance between the top and bottom plates:

D>>H. This means that q in (6) is small. To find k
we can use the relational

16g=k’+ (1/2) k4+; k’+....

to obtain

k’ = (2e-D/B)’ – + (2e-D@)’ + ..0. (23)

Further, since sn 2Kx/7r differs from sin x only by terms

in k2, we have from (20b), to the first power in k,
..

7rc

Suppose now that C is nearly H, and write

c
=1–C (e<- 1).

F

Then

1 = ~ (1 – Se-mD/H).

Using the approximation’

f(12) =21n+- (1<< 1),

(25)

(26)

(27)

we find that in this case

30T2/4K
Zo = (II – C<< ZZ<<D). (28)

8H
in + 4e-.DlH

7r(i7 — c)

From this we can at once obtain the impedance of a line

with only one center strip by letting D become infinite

and dividing ZO by 2 because the potential is now ap-

plied between the strip and the outer plates:

157r~
Zo =

822
- (H – C << H, single strip). (29)

~K in
7r(R — c)

The General Case

The situation when D is not large compared with H
can be treated somewhat less easily; for variety we

shall start from (19). Writing as before (by (13))

,u=K(l —E), we note that since cn K=O, we have

d/w = O. Use of the addition theorems for the Jacobian

elliptic functions gives

(i? k’ sn Ke
— .

l+kdn Ke
(30)

w
To illustrate how the work of computation can be

done approximately, let us consider the case in which 11 Ibid.
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1 p’–p+~’+p”so tha.tlz
+~

)l–& –+””” .
(34)

1 – k K2e2
1 —— (e’ << 1).

‘l+k 4
(31)

Thus, expanding a few terms,

This can be reduced to a series in q which converges

well when g is not too close to unity. It follows from

known formulas in elliptic functions and their trans-

formational’ that

In K=ln~+4
(

~+~~
l+q 3 I+qt

+~~+”””
51+q’ )

(32)

2LIId

l–k

(

Ilqlq’
in ~-= –8~q — —+——+”””l–q+y l_q3 5 I–qs )

(33)

so that if we write q = P2,

‘n (+$ K’)

=21n~–8
(

p–p2+p3+p’

l–p4

M Note that higher terms in this expansion are easy to obtain,
since (30) is exact.

‘8 C. G. J. Jacobi, “Werke,” Berlin, vol. 1, pp. 148, 159; 1881.

(lnl=21n~–8 p–p’+~p’+p’i +...
)

, (35)

whence

#2e2

(
l=% l–P+; P’+; P3+:P’+ ”””

)
8 (36)

of which the first term again gives (26). The use c~f (27)

and (35) now gives us

Zo=
307r’/4K

8H
in

(
+4 p–p’+:p’+ p’+...

7r(H – c) )
(17 - C<< H) (37)

with

As long as H– C remains less than, say, H/4, this is an

excellent approximation for any configuration that one

would be likely to use in practice.

I should like to express my thanks to Dr. A. Mcrrison

for his helpful suggestions in the preparation of this

paper.

A High-Speed Broadband Microwave Waveguide Switch*
W. L. TEETER~

Summary-A switch which switches microwave energy to any of
several separate waveguide loads is described. The switch has the
bandwidth and power-carrying capability which is essentially that of

the input and output waveguides. Data is given for a switch which
operates over the frequency range of 8,600 to 10,000 mc with a vswr

of less than 1.15 during transmission and less than 1.5 during switch-

ing. The switching speed is limited only by the practical limit for
rotating the metal shorting vane. A typical example is given of a

5-output switch with a switching rate of 1,800 per second (vane rota-

tion of 3,600 rpm) and a dead time during switching of 14 per cent of

total time. Dead time is a function of switch dkuneter and vane rota-
tion rate and could be reduced by increasing the vane diameter or
rotation rat e.

INTRODUCTION

T
1H IS PAPER describes development of a high-

speed waveguide switch capable of switching high

power from one input to any number of outputs.

* F’resented at the Microwave Techniques and Applications Con-
ference, National Bureau of Standards Dedication Scientific Meeting,
September, 1954.

~ IJ. S. Navy Electronics Lab., San Diego, CaIif.

Three types of switches were studied.

The first switch (Fig. 1, next page), places a number

of waveguide tees in series. A movable vane, containing

a rectangular hole is then moved across the top of each

tee to select which load will receive the rf energy. All

other loads are shorted. This switch has a 1 per cent

bandwidth, excessive y high vswr during switching (i.e.,

20 to 1), and two rather critical manufacturing toler-

ances.
The second switch (Fig. 2, next page), has all output

waveguides in shunt to provide a turnstile junlction.

Rf energy enters through the CkCUkLr wavegulide at

the base. A cylindrical rotor with a hole in it rotates in

such a way that the hole allows energy to pass to a par-

ticular load. This switch has a 3 per cent frequency

bandwidth, excessively high vswr during switchi~lg and

two critical manufacturing tolerances.1

1 There is some discussion of the turnstile switch in M TT Rad.
Lab. series, vol. 9, p. 538.


